AbdalfttahAcademy

Single-Cell RNA-seq Workshop

Welcome to the Single-Cell RNA-seq Workshop

This 2-day Single-Cell RNA-seq Workshop is designed to provide both foundational knowledge and practical experience in single-cell transcriptomics.

Workshop Structure

On Day 1:

  • - we focus on the theoretical concepts behind single-cell technologies, protocols, and analytical pipelines, helping participants understand the logic and methodology behind each step.

On Day 2:

  • - it is a special hands-on session conducted in R, where participants will analyze real-world single-cell data from the publication: “Harnessing STING signaling and natural killer cells overcomes PARP inhibitor resistance in homologous recombination deficient breast cancer.”

  • - Mohmed Abdalfttah, one of the authors of this study, performed the single-cell analysis and will guide the session.

  • - Although the hands-on will primarily use R, some tools and workflows explored will also include Python-based solutions, offering a well-rounded perspective on multi-platform single-cell analysis.

Course Content

    • Morning Session:

    • Introduction to Single-Cell Technologies

      • - Evolution and need for single-cell analysis

      • - Comparison of platforms (10x Genomics, SMART-Seq, Drop-Seq)

      • - Applications: cancer, immunology, developmental biology

    • Experimental Design & Protocols

      • - Sample collection, dissociation, viability check

      • - Barcoding, reverse transcription, library preparation

      • - Avoiding batch effects: experimental best practices

    • scRNA-seq Data Workflow Overview

      • - From FASTQ to expression matrix

      • - Introduction to Cell Ranger

    • Break

    • Afternoon Session:

    • Quality Control

      • Ambient RNA: CellBender

      • Doublets: Scrublet

      • Mitochondrial % and QC thresholds

      • Denoising: brief on MAGIC and imputation caveats

    • Normalization & Feature Selection

      • Log-normalization as the standard workflow

      • HVG selection: mean-variance & VST

      • Biological relevance of features

    • Dimensionality Reduction & Clustering

      • PCA → UMAP/t-SNE

      • Graph-based clustering (KNN, Louvain)

      • Interpretation and pitfalls

    • Cell Type Annotation

      • Marker-based + reference mapping

      • Tools: SingleR, Azimuth

      • Manual curation tips

    • Morning Session:

    • Cell Ranger Output Interpretation (R & command line)

      • - Load filtered feature-barcode matrix

      • - Inspect Cell Ranger output structure and QC metrics (JSONs, HTML)

    • Preprocessing & QC (R: Seurat, Python: Scanpy demo)

      • - Filter cells & genes by count, gene, and mitochondrial thresholds

      • - Apply ambient RNA correction with CellBender (Python demo)

      • - Detect doublets with Scrublet (Python) or DoubletFinder (R)

      • - Generate visual QC plots

    • Normalization & HVG Selection (R main)

      • - Apply Log-normalization

      • - Identify and visualize HVGs

      • - Assess biological vs technical variation

    • Lunch Break

    • Afternoon Session

    • Dimensionality Reduction & Clustering (R main)

      • - Perform PCA

      • - Construct KNN graph and apply clustering (Louvain)

      • - Visualize with UMAP

    • Cell Type Annotation (R main, Python optional)

      • - Visualize marker gene expression

      • - Automatic annotation with Azimuth or SingleR

      • - Manual curation and cluster naming

    • Dataset Integration

      • - Apply Harmony (R) to correct for batch effects

      • - Compare with scVI (Python) for latent variable modeling

      • - Discussion on strengths and use cases for each method

    • Differential Expression Analysis

      • - Compare resistant vs sensitive mice to PARPi therapy

      • - Identify DE genes across key immune and tumor populations

      • - Discuss biological implications in the context of the publication

Who Should Enroll?

  • If you are a first-year undergraduate student, this workshop is NOT for you. You CANNOT attend.

  • - Researchers familiar with bulk RNA-seq who want to transition to single-cell analysis.

  • - Biologists and bioinformaticians interested in exploring scRNA-seq technologies and workflows.

  • - Undergraduate students (second year or above) with a strong interest in genomics and data analysis.

  • - Master’s and PhD students working in genomics, immunology, cancer biology, or related fields

  • - Computational scientists aiming to apply R/Python skills in a cutting-edge biomedical context

  • - Anyone curious about real-world applications of scRNA-seq in cancer and immunotherapy research

  • No prior single-cell experience is required, but basic understanding of transcriptomics is highly recommended.

Instuctor Mohmed Abdalfttah Picture

Mohmed Abdalfttah

Instructor

PhD Candidate

Faculty of Medicine, Autonomous University of Madrid
National Cancer Research Center (CNIO)
Single-Cell RNA-seq Workshop
  • 4-5 April
  • El-Dokki
  • 2 days
  • 80% off
    100$ USD
    20$ USD

الدورات

Introduction to Cancer Biology Course
Advanced Biology

Introduction to Cancer Biology

100$ USD

Enroll
Single-Cell RNA Sequencing Course
Data Analysis and Technologies

Single-Cell RNA Sequencing

upon request

Enroll
Data Analysis & Bioinformatics with R Course
Data Analysis and Technologies

Data Analysis & Bioinformatics with R

free

Enroll
RNA Transcription Course
Basics

RNA Transcription

free

Enroll
Show More

Coming Soon

Stay Tuned

آراء المتعلمين

China flag
Ahmed testimonial

شكر كبير لمحمد! حضوري لكورس RNA-seq مع محمد كان تجربة مميزة جدًا! أسلوبه في الشرح بسيط وسلس، وخلاني أقدر أفهم مفاهيم معقدة بسهولة. المعرفة اللي اكتسبتها كانت فعلاً نقطة تحول بالنسبة لي، وبفضل توجيهاته ودعمه، أنا دلوقتي على وشك نشر بحث علمي في هذا المجال

Ahmed

China
Saudi Arabia flag
Refan testimonial

تجربتي مع محمد كانت فعلاً مختلفة عن أي كورس حضرته قبل كده! أسلوبه في الشرح سهل وسلس، وبيخليك تفهم المعلومة من غير أي تعقيد، كأنك بتتعلم حاجة جديدة وانت مستمتع بيها. مش مجرد شرح نظري، لأ، بيخليك تفكر وتبحث بنفسك، وكل مرة تكتشف حاجات جديدة تخليك منبهر بتطور العلم. طريقته في التدريس مش بس بتوصلك المعلومة، لكن كمان بتخليك متحمس إنك تتعلم أكتر. بجد استفدت جدًا وسعيد بالتجربة ❤️

Refan

Saudi Arabia
USA flag
Rania testimonial

محمد واحد من أفضل الخبراء في المعلوماتية الحيوية وتحليل البيانات الجينية، وأسلوبه في الشرح بسيط وسهل يخلي أي حد يفهم حتى أصعب المواضيع. عنده شغف كبير بالتعليم ودايماً بيبذل مجهود عشان يساعد طلابه، رغم انشغاله بدراساته وأبحاثه. طريقته في تبسيط المعلومات وتوصيلها بشكل واضح بتخلي التعلم معاه ممتع وسهل. كمان شخص ملتزم، صادق، وعنده روح قيادية قوية.

Rania

USA

اتصل بنا